МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

СИЛЛАБУС

«Современные и перспективные технологии переработки сырьевых ресурсов цветной и черной металлургии»

(название дисциплины)

для специальности 6M070900 – «Металлургия» 2 кредита

Семестр: весенний, 2019-2020 уч. год

Алматы, 2020

Институт <u>«Металлургия и Промышленная Инженерия»</u> Кафедра <u>«Металлургия и обогащение полезных ископаемых»</u>

1. Информация о преподавателе:

Ассоциированный профессор Досмухамедов Н.К. Офисные часы, кабинет 143 ГМК Email zhte@mal.ru

2. Цель курса:

<u>Изучение теории и технологии современных процессов, используемых в производстве</u> цветных и черных металлов. Умение решать конкретные задачи и использовать результаты при разработке технологии получения цветных, черных металлов и их сплавов.

3. Описание курса:

Технологические схемы производства цветных металлов из сульфидных концентратов можно разделить на два основных типа (с определенной долей условности) - пирометаллургические и гидрометаллургические. До недавнего времени доля меди, получаемой пирометаллургическими технологиями составляла более 85 %. В последние годы заметно возросло количество меди, производимой по гидрометаллургическим технологиям типа SX-EW (выщелачивание — экстракция — реэкстракция - электролиз), обладающей низкими затратами. В настоящее по этим технологиям (наиболее активно используется в Чили, США, Перу) получают более 20 % меди. В данной технологии благородные металлы практически полностью теряются.

Несмотря на перспективность гидрометаллургических технологий по схемам SX-EW для переработки определенного вида медного сульфидного сырья основными по-прежнему являются пирометаллургические автогенные технологии, активно развивающиеся в последние несколько десятилетий, как на Западе, так и в странах ближнего зарубежья.

Задачей курса является ознакомление с теорией и практикой новых инновационных процессов широко используемых автогенных процессов, а также процессов, прошедших стадии опытно-промышленных и промышленных испытаний.

4. Пререквизиты:

- «Основы металлургии»
- «Процессы и аппараты металлургического производства»
- «Основы научных исследований»
- «Теория металлургических процессов»
- «Металлургическая теплотехника и печи»
- «Металлургия цветных и черных металлов»
- «Моделирование процессов»

5. Постреквизиты:

- «Металлургия цветных металлов»
- «Теория пирометаллургических процессов»
- «Технология переработки вторичного и техногенного сырья»

6. Список литературы:

Базовая литература	Дополнительная литература
[1] Досмухамедов Н.К., Даулетбаков Т.С., Егизеков М.Г. и др. Медное производство Казахстана. Монография – Алматы: Изд-во «DPS». – 2010. – 472 с.	[9] M.L. Bakker, S. Nikolic, P.J. Mackey. ISASMELT TM TSL – Applications for nickel // Minerals Engineering 24, 2011, P.610–619.
[2] M.E. Schlesinger, M.J. King, K.C. Sole, W.G. Davenport. Extractive Metallurgy of Copper. 2011. 411 p.	[10] N. Moelans, B. Coletti, M. Straetemans, B. Blanpain, and P. Wollants, <i>Metallurgical and Materials Processing, Principles, and New Technologies (Yazawa Symposium)</i> , ed. F. Kongoli, K. Itagaki, C. Yamagauchi, and H.Y. Sohn (Warrendale, PA: TMS, 2003), p. 509.
[3] T. Norgate, S. Jahanshahi. Low grade ores – Smelt, leach or concentrate? // Minerals Engineering 23, 2010, P. 65–73.	[11] M.L. Bakker, S. Nikolic, P.J. Mackey. ISASMELT TM TSL – Applications for nickel // Minerals Engineering 24, 2011, P.610–619.
[4] H.Y. Sohn, S. Kang and J. Chang. Sulfide smelting fundamentals, technologies and innovations // Minerals and Metallurgical processing, 2005, Vol. 22, No. 2, P.65-76.	[12] M. Moats and M. Free. A Bright Future for Copper Electrowinning // JOM, October 2007, P.34-36
[5] M. G. King. The Evolution of Technology for Extractive Metallurgy over the Last 50 Years—Is the Best Yet to Come? // JOM, 2007 February, P.21-27.	[13] J.W. Matousek. Oxidation Potentials in Lead and Zinc Smelting // JOM, December 2011, P.63-67.
[6] Z. Asaki, T. Taniguchi, and M. Hayashi. Kinetics of the Reactions in the Smelting Furnace of the Mitsubishi Process // JOM , May 2001, P.25-27	[14] D.R. Swinbourne and T.S. Kho. Computational Thermodynamics Modeling of Minor Element Distributions During Copper Flash Converting // Menallurgical and materials transactions, Vol. 43B, 2012, P.423-429.
[7] Софра Дж., Хьюз Р.А. Применение технологического процесса Ausmelt на плавильных предприятиях. Свинец-Цинк 2005, Киото, Япония, 17-19 октября, 2005.	[15] A. Agrawal, K.K. Sahu. Problems, prospects and current trends of copper recycling in India: An overview. Resources, Conservation and Recycling 54, 2010, P.401–416.
[8] Mark E. Schlesinger, Matthew J. King, Kathryn C. Sole, William G. Davenport. Extractive Metallurgy of Copper. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2011	

7. Календарно - тематический план:

Неделя	Тема лекции	Тема практической работы	Ссылка на литературу	Задание	Срок сдачи
1	Введение				

	Современное состояние производства и	Общие подходы, применяемые при металлургических	[1] P. 30-97, [2] P. 50- 187,	
2	потребления цветных, черных металлов и их сплавов	расчетов	[3] P.65-73, [8] Chapter 1	
3	Автогенные процессы. Физико-химические основы процессов плавки на штейн	Металлургические расчеты. Расчет материального и теплового баланса металлургических процессов	[3] P. 65-73, [4] P. 65-76, [8] Chapter 1, [14] P. 423- 429, [15] P. 401- 416	
4	Общие закономерности и особенности плавки сульфидного медного, никелевого и свинцового концентрата в Печи Ванюкова		[1] стр. 97- 187, [3] Глава 1, [4] Р. 65-76, [8] Chapter 2, [9] Р. 610– 619	СРС-1. Обзор действующих и новых технологий в производстве цветных и черных металлов. Анализ рынка
5	Теория и практика плавки сульфидного медного концентрата в печи Isasmelt	Термодинамика оксидных, сульфидных и оксидно-сульфидных расплавов. Расчет активности компонентов	[3] Глава 1, [5] Р. 21-27, [8] Chapter 9, [10] Р.25-76	
6	Сравнительный анализ современных процессов прямого получения меди из сульфидных концентратов	Потери цветных металлов со шлаками. Расчеты потерь металлов со шлаком	[1] crp. 187-238, [7] crp. 15-25, [8] Chapter 7, [10] P. 76-126	СРС-2. Оценка возможности вторичного использования газовой фазы. Оценка факторов, влияющих на конечные технологические показатели процесса
7	Полупродукты и оборотные материалы медного производства и способы их переработки		[4] P. 65-76, [5] P. 21-27, [11] P. 610– 619	
8		точная аттестация		
9	Термодинамика равновесия	Расчет равновесий термодинамической	[1] стр. 238 - 351,	

	системы штейн — шлак — газовая фаза и металл — шлак — газовая фаза Способы прямого	системы металл- шлак, штейн-шлак- газовая фаза	[3] P. 65-67, [4] P.65-76, [9] P. 610 – 619	СРС-3. SWOT-анализ	
10	получения свинца из первичного и вторичного сырья		[8] Chapter 7, [10] Γπαβα 2, [12] P. 34-36	процессов. Технологическая и эколого-экономическая оценка	
11	Полупродукты и оборотные материалы свинцового производства. Способы их переработки	Формы нахождения свинца в шлаках. Расчеты потерь свинца со шлаками	[1] ctp. 351-392, [13] P. 63-67, [14] P. 423-429		
12	Современные способы переработки шлаков. Новые технологии переработки накопленных и текущих шлаков с комплексным извлечением ценных металлов. Теория, практика процессов		[2] P. 221-277, [8] Chapter 18, [12] P. 34-36, [13] P. 63-67	СРС-4. Получение свинца из аккумуляторного лома и переработка попутных продуктов	
13	Сравнительный анализ способов переработки шлаков с точки зрения комплексности использования сырья	Расчет активности компонентов бинарных систем	[3] Глава 1, [6] Р.25-27, [9] Р. 610– 619		
14	Совершенствование существующих процессов переработки медь-, свинец содержащего сырья	Диаграммы состояния Cu-Fe-S и Fe-C. Расчет активности компонентов	[8] Chapter 22, [9] P. 610–619, [12] P. 34-36, [13] P. 63-67		
15		ьная аттестация			
	<u> </u>	вамен			

^{*}В календарно – тематическом календаре возможны изменения с учетом праздничных дней

8. Задания и краткие методические указания по их выполнению:

✓ Самостоятельная работа магистранта (CPM):

<u>СРМ выполняется по индивидуальным вариантам, выдаваемым преподавателем, охватывает несколько тем: квантование и дискретизация информации, меры дискретной информации, представление и преобразование числовой информации. Выполненная работа должна включать теоретический материал и решение примеров.</u>

✓ Совместная работа с преподавателем (СРМП):

Еженедельные СРСМП проводится по темам лекций и практических занятий.

Оформляется по стандарту и сдается лектору в течение обучения по курсу одна работа (СРМП), посвященная вопросам кодирования и шифрования информации. Выполняется по индивидуальным вариантам, выдаваемым преподавателем. Выполненная работа должна включать теоретический материал и применение теории к решению практической задачи, анализ полученного решения.

✓ Практическая работа:

Практическая работа заключается в выполнении заданий на практических занятиях. Каждому практическому занятию соответствует файл Практическое занятие № (номер недели), в котором имеются задания и методические указания по их выполнению (представлено на сайте в образовательном портале). Темы занятий представлены ниже.

<u>Практическое занятие № 1. Общие подходы, применяемые при металлургических расчетов</u> (1 час).

<u>Практическое занятие № 2. Металлургические расчеты. Расчет материального и теплового баланса металлургических процессов (2 часа).</u>

<u>Практическое занятие № 3. Термодинамика оксидных, сульфидных и оксидно-сульфидных расплавов. Расчет активности компонентов (1 час).</u>

<u>Практическое занятие № 4. Потери цветных металлов со шлаками. Расчеты потерь металлов</u> со шлаком (2 часа).

<u>Практическое занятие № 5. Расчет равновесий термодинамической системы металл-шлак,</u> штейн-шлак-газовая фаза (2 часа).

<u>Практическое занятие № 6. Формы нахождения свинца в шлаках. Расчеты потерь свинца со</u> шлаками (2 часа).

Практическое занятие № 7 Расчет активности компонентов бинарных систем (1 час).

<u>Практическое занятие № 8 Диаграммы состояния Cu-Fe-S и Fe-C. Расчет активности компонентов (1 час).</u>

- <u>РК 1 Мультивариантный тест №1 в письменной форме (по всему материалу, пройденному</u> за первые 7 недель обучения)
- <u>РК 2 Мультивариантный тест №2 в письменной форме (по всему материалу, пройденному за курс обучения)</u>

✓ Экзамен:

Охватывает и обобщает весь материал курса. Экзамен проводится по билетам в письменной форме, включает лекционный материал, материал СРС и СРСП, практическое решение конкретной задачи. Продолжительность экзамена 2 академических часа. Письменный ответ должен быть аккуратно оформлен, содержать правильное, полное и четкое изложение теоретического материала с иллюстрацией на примерах, правильное и оптимальное решение практических задач строго в соответствии с заданием, сформулированном в экзаменационном билете.

9. Критерии оценивания работ:

Оценка по буквенной системе	Цифровой эквивалент оценки	Критерий
A	95 – 100	Критическое мышление. Научное обоснование, новизна технологического решения проблемной задачи. Умение творчески применять полученные знания.
A -	90 – 94	Критическое мышление. Новые технологические подходы и технические решения проблемной задачи.
B +	85 – 89	Критическое мышление. Инициативное инженерно-техническое новое предложение по решению проблемной задачи.
В	80 – 84	Критическое мышление. Инициативное предложение по решению проблемной задачи. Применение полученных знаний для решения технологических задач с использованием инженерных подходов
В -	75 – 79	Критическое мышление. Применение общих теоретических подходов к решению проблемной задачи. Применение полученных знаний для решения различных задач, имеющих частное локальное решение.
C +	70 – 74	Применение общих теоретических подходов к решению проблемных задач. Обоснование результатов, умение обобщать выводы и решения.
С	65 – 69	Применение общих теоретических подходов к решению проблемной задачи. Не достаточно полное раскрытие материала.
C -	60 – 64	Применение общих теоретических подходов к решению проблемной задачи. Не полное раскрытие материала. Решение заданий с рядом ошибок
D +	55 – 59	Применение общих теоретических подходов к решению проблемной задачи. Не раскрытие материала. Решение заданий с множествами ошибок
D	50 – 54	Частичное применение общих теоретических подходов к решению проблемной задачи. Не раскрытие материала. Решение заданий с множествами ошибок
F	0 – 49	Слабое посещение занятий. Не полное освоение материала

^{*}Возможно получение бонусных баллов за выполнение дополнительных заданий

10. Политика поздней сдачи работ:

Соблюдать сроки сдачи практических работ, СРМ, СРМП. При несвоевременной сдаче работ

предусматривается уменьшение максимального балла на 10%.

11. Политика посещения занятий:

Не опаздывать и не пропускать занятия, во время занятий отключать сотовые телефоны, быть подготовленными к занятиям, пунктуальными и обязательными. Если Вы вынуждены пропустить рубежный контроль или финальный экзамен по уважительным причинам, Вы должны предупредить преподавателя заранее до контроля или экзамена.

12. Политика академического поведения и этики:

Будьте толерантны, уважайте чужое мнение. Возражения формулируйте в корректной форме. Плагиат и другие формы нечестной работы недопустимы. Недопустимы подсказывание и списывание во время экзаменов, сдача экзамена за другого студента. Студент, уличенный в фальсификации любой информации курса, получит итоговую оценку «Г». В рамках обучения по дисциплине недопустимы любые коррупционные проявления в любой форме. Организатор таких действий (преподаватель, студенты или третьи лица по их поручению) несут полную ответственность за нарушение законов РК.

Рассмотрено на заседании кафедры МиОПИ, протокол №6 от «17» января 2020 г.

Составитель: Ассоциированный профессор . Досмухамедов Н.К.